Show simple item record

dc.contributor.authorBarocas, V. Ηel
dc.contributor.authorSander, E. A.en
dc.contributor.authorStylianopoulos, T.en
dc.contributor.authorTranquillo, R. T.en
dc.creatorBarocas, V. Ηel
dc.creatorSander, E. A.en
dc.creatorStylianopoulos, T.en
dc.creatorTranquillo, R. T.en
dc.date.accessioned2019-05-06T12:24:31Z
dc.date.available2019-05-06T12:24:31Z
dc.date.issued2009
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48795
dc.description.abstractThe mechanical environment plays an important role in cell signaling and tissue homeostasis. Unraveling connections between externally applied loads and the cellular response is often confounded by extracellular matrix (ECM) heterogeneity. Image-based multiscale models provide a foundation for examining the fine details of tissue behavior, but they require validation at multiple scales. In this study, we developed a multiscale model that captured the anisotropy and heterogeneity of a cell-compacted collagen gel subjected to an off-axis hold mechanical test and subsequently to biaxial extension. In both the model and experiments, the ECM reorganized in a nonaffine and heterogeneous manner that depended on multiscale interactions between the fiber networks. Simulations predicted that tensile and compressive fiber forces were produced to accommodate macroscopic displacements. Fiber forces in the simulation ranged from -11.3 to 437.7 nN, with a significant fraction of fibers under compression (12.1% during off-axis stretch). The heterogeneous network restructuring predicted by the model serves as an example of how multiscale modeling techniques provide a theoretical framework for understanding relationships between ECM structure and tissue-level mechanical properties and how microscopic fiber rearrangements could lead to mechanotransductive cell signaling.en
dc.language.isoengen
dc.sourceProceedings of the National Academy of Sciences of the United States of Americaen
dc.subjectModelsen
dc.subjectmodelen
dc.subjectarticleen
dc.subjectconceptual frameworken
dc.subjectHumansen
dc.subjectpredictionen
dc.subjectpriority journalen
dc.subjectMolecularen
dc.subjectBiologicalen
dc.subjectmicroscopyen
dc.subjectSignal Transductionen
dc.subjectcell structureen
dc.subjectsimulationen
dc.subjectCellularen
dc.subjectBiomechanicsen
dc.subjectanisotropyen
dc.subjectGelsen
dc.subjectextracellular matrixen
dc.subjectMechanotransductionen
dc.subjectcollagen gelen
dc.subjectforceen
dc.subjectFibroblastsen
dc.subjectmechanotransductionen
dc.subjectcompressionen
dc.subjectCollagen Type Ien
dc.subjectcomprehensionen
dc.subjectCompressive Strengthen
dc.subjectCruciformsen
dc.subjectexperimenten
dc.subjectfiberen
dc.subjectHomeostasisen
dc.subjectMechanobiologyen
dc.subjectMultiprotein Complexesen
dc.subjectTensile Strengthen
dc.subjecttissue levelen
dc.subjectTissue mechanicsen
dc.titleImage-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gelsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1073/pnas.0903716106
dc.description.volume106
dc.description.startingpage17675
dc.description.endingpage17680
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.description.totalnumpages17675-17680
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record