Show simple item record

dc.contributor.authorStylianopoulos, T.en
dc.contributor.authorEconomides, E. A.en
dc.contributor.authorBaish, J. W.en
dc.contributor.authorFukumura, D.en
dc.contributor.authorJain, R. K.en
dc.creatorStylianopoulos, T.en
dc.creatorEconomides, E. A.en
dc.creatorBaish, J. W.en
dc.creatorFukumura, D.en
dc.creatorJain, R. K.en
dc.date.accessioned2019-05-06T12:24:40Z
dc.date.available2019-05-06T12:24:40Z
dc.date.issued2015
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48857
dc.description.abstractConventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome. © 2015, Biomedical Engineering Society.en
dc.language.isoengen
dc.sourceAnnals of Biomedical Engineeringen
dc.subjectMathematical modelsen
dc.subjectModelsen
dc.subjectmathematical modelen
dc.subjectantineoplastic agenten
dc.subjectAntineoplastic Agentsen
dc.subjectcancer chemotherapyen
dc.subjecthumanen
dc.subjectNeoplasmsen
dc.subjectHumansen
dc.subjectpaclitaxelen
dc.subjectpriority journalen
dc.subjectsolid tumoren
dc.subjectbiological modelen
dc.subjectArticleen
dc.subjectBiologicalen
dc.subjectbinding affinityen
dc.subjectchemistryen
dc.subjectdrug delivery systemen
dc.subjectUniform distributionen
dc.subjectDrug deliveryen
dc.subjectTumorsen
dc.subjectDiseasesen
dc.subjectMathematical modelingen
dc.subjectTumor microenvironmenten
dc.subjectnanoparticleen
dc.subjectParticle sizeen
dc.subjectNanoparticlesen
dc.subjectdrug designen
dc.subjectdrug releaseen
dc.subjectnanocarrieren
dc.subjectDrug Carriersen
dc.subjectBinding energyen
dc.subjectChemotherapeutic drugsen
dc.subjectdrug carrieren
dc.subjectDrug productsen
dc.subjectDrug release kineticsen
dc.subjectEnhanced permeability and retention effectsen
dc.subjectNano-carriersen
dc.subjectOptimal systemsen
dc.subjectPrimary nanoparticlesen
dc.subjectprocess optimizationen
dc.subjectSecondary particlesen
dc.titleTowards Optimal Design of Cancer Nanomedicines: Multi-stage Nanoparticles for the Treatment of Solid Tumorsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/s10439-015-1276-9
dc.description.volume43
dc.description.startingpage2291
dc.description.endingpage2300
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.description.totalnumpages2291-2300
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record