Activation of endogenous FAK via expression of its amino terminal domain in xenopus embryos
Date
2012Author
Petridou, Nicoletta I.Stylianou, Panayiota
Christodoulou, Neophytos
Rhoads, Daniel S.
Guan, Junlin

ISSN
1932-6203Source
PLoS ONEVolume
7Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
Background: The Focal Adhesion Kinase is a well studied tyrosine kinase involved in a wide number of cellular processes including cell adhesion and migration. It has also been shown to play important roles during embryonic development and targeted disruption of the FAK gene in mice results in embryonic lethality by day 8.5. Principal Findings: Here we examined the pattern of phosphorylation of FAK during Xenopus development and found that FAK is phosphorylated on all major tyrosine residues examined from early blastula stages well before any morphogenetic movements take place. We go on to show that FRNK fails to act as a dominant negative in the context of the early embryo and that the FERM domain has a major role in determining FAK's localization at the plasma membrane. Finally, we show that autonomous expression of the FERM domain leads to the activation of endogenous FAK in a tyrosine 397 dependent fashion. Conclusions: Overall, our data suggest an important role for the FERM domain in the activation of FAK and indicate that integrin signalling plays a limited role in the in vivo activation of FAK at least during the early stages of development. © 2012 Petridou et al.
Collections
Cite as
Related items
Showing items related by title, author, creator and subject.
-
Article
Addressing the Functional Determinants of FAK during Ciliogenesis in Multiciliated Cells
Antoniades, Ioanna; Stylianou, Panayiota; Christodoulou, Neophytos; Skourides, Paris A. (2017)We previously identified focal adhesion kinase (FAK) as an important regulator of ciliogenesis in multiciliated cells. FAK and other focal adhesion (FA) proteins associate with the basal bodies and their striated rootlets ...
-
Article
Split-Inteins for Simultaneous, site-specific conjugation of Quantum Dots to multiple protein targets In vivo
Charalambous, Anna; Antoniades, Ioanna; Christodoulou, Neophytos; Skourides, Paris A. (2011)Background: Proteins labelled with Quantum Dots (QDs) can be imaged over long periods of time with ultrahigh spatial and temporal resolution, yielding important information on the spatiotemporal dynamics of proteins within ...
-
Article
The nucleotide-binding proteins Nubp1 and Nubp2 are negative regulators of ciliogenesis
Kypri, Elena; Christodoulou, A.; Maimaris, G.; Lethan, M.; Markaki, M.; Lysandrou, C.; Lederer, C. W.; Tavernarakis, N.; Geimer, S.; Pedersen, L. B.; Santama, Niovi (2014)Nucleotide-binding proteins Nubp1 and Nubp2 are MRP/MinD-type P-loop NTPases with sequence similarity to bacterial division site-determining proteins and are conserved, essential proteins throughout the Eukaryotes. They ...