Show simple item record

dc.contributor.authorMpekris, F.en
dc.contributor.authorAngeli, S.en
dc.contributor.authorPirentis, A. P.en
dc.contributor.authorStylianopoulos, T.en
dc.creatorMpekris, F.en
dc.creatorAngeli, S.en
dc.creatorPirentis, A. P.en
dc.creatorStylianopoulos, T.en
dc.date.accessioned2019-05-06T12:24:11Z
dc.date.available2019-05-06T12:24:11Z
dc.date.issued2015
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48648
dc.description.abstractOxygen supply plays a central role in cancer cell proliferation. While vascular density increases at the early stages of carcinogenesis, mechanical solid stresses developed during growth compress tumor blood vessels and, thus, drastically reduce not only the supply of oxygen, but also the delivery of drugs at inner tumor regions. Among other effects, hypoxia and reduced drug delivery compromise the efficacy of radiation and chemo/nanotherapy, respectively. In the present study, we developed a mathematical model of tumor growth to investigate the interconnections among tumor oxygenation that supports cancer cell proliferation, the heterogeneous accumulation of mechanical stresses owing to tumor growth, the non-uniform compression of intratumoral blood vessels due to the mechanical stresses, and the insufficient delivery of oxygen and therapeutic agents because of vessel compression. We found that the high vascular density and increased cancer cell proliferation often observed in the periphery compared to the interior of a tumor can be attributed to heterogeneous solid stress accumulation. Highly vascularized peripheral regions are also associated with greater oxygenation compared with the compressed, less vascularized inner regions. We also modeled the delivery of drugs of two distinct sizes, namely chemotherapy and nanomedicine. Model predictions suggest that drug delivery is affected negatively by vessel compression independently of the size of the therapeutic agent. Finally, we demonstrated the applicability of our model to actual geometries, employing a breast tumor model derived from MR images. © 2015, Springer-Verlag Berlin Heidelberg.en
dc.language.isoengen
dc.sourceBiomechanics and Modeling in Mechanobiologyen
dc.subjectMathematical modelsen
dc.subjectModelsen
dc.subjectmathematical modelen
dc.subjectconceptual frameworken
dc.subjectantineoplastic agenten
dc.subjectAntineoplastic Agentsen
dc.subjecthumanen
dc.subjectBreast Neoplasmsen
dc.subjectcontrolled studyen
dc.subjectcancer combination chemotherapyen
dc.subjectChemotherapyen
dc.subjectDisease Progressionen
dc.subjectpriority journalen
dc.subjectsolid tumoren
dc.subjectdisease courseen
dc.subjectclinical assessmenten
dc.subjectbiological modelen
dc.subjectoxidative stressen
dc.subjectpathologyen
dc.subjectStressen
dc.subjecttumor growthen
dc.subjectvasculotropinen
dc.subjectnuclear magnetic resonance imagingen
dc.subjectArticleen
dc.subjectBiologicalen
dc.subjectmetabolismen
dc.subjectpathophysiologyen
dc.subjectcomparative studyen
dc.subjectcancer cellen
dc.subjectAnimalsen
dc.subjectMiceen
dc.subjectanimalen
dc.subjectmouseen
dc.subjectMagnetic resonance imagingen
dc.subjectdrug effectsen
dc.subjectTumoren
dc.subjectbreast tumoren
dc.subjectCell Lineen
dc.subjectHypoxiaen
dc.subjectdrug delivery systemen
dc.subjectCellularen
dc.subjectCellsen
dc.subjectCytologyen
dc.subjectcomputer simulationen
dc.subjectStressesen
dc.subjectOxygenen
dc.subjectCell proliferationen
dc.subjectTumorsen
dc.subjectparticle sizeen
dc.subjectDiseasesen
dc.subjectMathematical modelingen
dc.subjectblood vesselen
dc.subjectMechanicalen
dc.subjectMechanotransductionen
dc.subjectBlood vesselsen
dc.subjectTherapeutic agentsen
dc.subjectmechanical stressen
dc.subjectblood vessel occlusionen
dc.subjectdrug transporten
dc.subjectmechanotransductionen
dc.subjectMedical nanotechnologyen
dc.subjectMedical imagingen
dc.subjectHeterogeneous soliden
dc.subjectNanomedicineen
dc.subjectNon-uniform compressionen
dc.subjectOxygen supplyen
dc.subjectOxygenationen
dc.subjectPeripheral regionsen
dc.subjectRadiation effectsen
dc.subjectTissue oxygenationen
dc.subjectVessel collapseen
dc.subjectbioaccumulationen
dc.subjectcell densityen
dc.subjectcompressionen
dc.subjectconcentration responseen
dc.subjectgeometryen
dc.subjectmetabolic clearance rateen
dc.subjectnanocarrieren
dc.subjectoxygen concentrationen
dc.subjectoxygen consumptionen
dc.subjectoxygen transporten
dc.subjecttumor cell lineen
dc.subjectTumor perfusionen
dc.subjectVascular densityen
dc.titleStress-mediated progression of solid tumors: effect of mechanical stress on tissue oxygenation, cancer cell proliferation, and drug deliveryen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1007/s10237-015-0682-0
dc.description.volume14
dc.description.startingpage1391
dc.description.endingpage1402
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.description.totalnumpages1391-1402
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record