Show simple item record

dc.contributor.authorVoutouri, C.en
dc.contributor.authorStylianopoulos, T.en
dc.creatorVoutouri, C.en
dc.creatorStylianopoulos, T.en
dc.date.accessioned2019-05-06T12:24:49Z
dc.date.available2019-05-06T12:24:49Z
dc.date.issued2014
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48931
dc.description.abstractThe mechanical microenvironment of solid tumors includes both fluid and solid stresses. These stresses play a crucial role in cancer progression and treatment and have been analyzed rigorously both mathematically and experimentally. The magnitude and spatial distribution of osmotic pressures in tumors, however, cannot be measured experimentally and to our knowledge there is no mathematical model to calculate osmotic pressures in the tumor interstitial space. In this study, we developed a triphasic biomechanical model of tumor growth taking into account not only the solid and fluid phase of a tumor, but also the transport of cations and anions, as well as the fixed charges at the surface of the glycosaminoglycan chains. Our model predicts that the osmotic pressure is negligible compared to the interstitial fluid pressure for values of glycosaminoglycans (GAGs) taken from the literature for sarcomas, melanomas and adenocarcinomas. Furthermore, our results suggest that an increase in the hydraulic conductivity of the tumor, increases considerably the intratumoral concentration of free ions and thus, the osmotic pressure but it does not reach the levels of the interstitial fluid pressure. © 2014 Elsevier Ltd.en
dc.language.isoengen
dc.sourceJournal of Biomechanicsen
dc.subjectMathematical modelsen
dc.subjectModelsen
dc.subjectmathematical modelen
dc.subjecthumanen
dc.subjectNeoplasmsen
dc.subjectHumansen
dc.subjectcontrolled studyen
dc.subjectcancer growthen
dc.subjectDisease Progressionen
dc.subjectmelanomaen
dc.subjectneoplasmen
dc.subjectsarcomaen
dc.subjectsolid tumoren
dc.subjectdisease courseen
dc.subjectbiological modelen
dc.subjectcarcinogenesisen
dc.subjectpathologyen
dc.subjectArticleen
dc.subjectadenocarcinomaen
dc.subjectBiologicalen
dc.subjectmetabolismen
dc.subjectpathophysiologyen
dc.subjectphysiologyen
dc.subjectpredictive valueen
dc.subjectStressesen
dc.subjectmathematical computingen
dc.subjectOsmosisen
dc.subjectTumorsen
dc.subjectInterstitial fluid pressuresen
dc.subjectosmotic pressureen
dc.subjectBiomechanical Phenomenaen
dc.subjectextracellular fluiden
dc.subjectspatial analysisen
dc.subjecttissue pressureen
dc.subjectTransport propertiesen
dc.subjectMicroenvironmentsen
dc.subjectTumor microenvironmenten
dc.subjectphase transitionen
dc.subjecthydraulic conductivityen
dc.subjectbiomechanicsen
dc.subjecttumor modelen
dc.subjectInterstitial spaceen
dc.subjectanion transporten
dc.subjectBio-mechanical modelsen
dc.subjectCancer progressionen
dc.subjectcarbohydrate analysisen
dc.subjectcation transporten
dc.subjectCharged densityen
dc.subjectDonnan osmotic pressureen
dc.subjectFixed charged densityen
dc.subjectglycosaminoglycanen
dc.subjectGlycosaminoglycansen
dc.subjectinterstitiumen
dc.subjectTumor mechanicsen
dc.titleEvolution of osmotic pressure in solid tumorsen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1016/j.jbiomech.2014.09.019
dc.description.volume47
dc.description.startingpage3441
dc.description.endingpage3447
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.description.totalnumpages3441-3447
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record