Show simple item record

dc.contributor.authorVavourakis, V.en
dc.contributor.authorWijeratne, P. A.en
dc.contributor.authorShipley, R.en
dc.contributor.authorLoizidou, M.en
dc.contributor.authorStylianopoulos, T.en
dc.contributor.authorHawkes, D. J.en
dc.creatorVavourakis, V.en
dc.creatorWijeratne, P. A.en
dc.creatorShipley, R.en
dc.creatorLoizidou, M.en
dc.creatorStylianopoulos, T.en
dc.creatorHawkes, D. J.en
dc.date.accessioned2019-05-06T12:24:47Z
dc.date.available2019-05-06T12:24:47Z
dc.date.issued2017
dc.identifier.urihttp://gnosis.library.ucy.ac.cy/handle/7/48914
dc.description.abstractVascularisation is a key feature of cancer growth, invasion and metastasis. To better understand the governing biophysical processes and their relative importance, it is instructive to develop physiologically representative mathematical models with which to compare to experimental data. Previous studies have successfully applied this approach to test the effect of various biochemical factors on tumour growth and angiogenesis. However, these models do not account for the experimentally observed dependency of angiogenic network evolution on growth-induced solid stresses. This work introduces two novel features: the effects of hapto- and mechanotaxis on vessel sprouting, and mechano-sensitive dynamic vascular remodelling. The proposed three-dimensional, multiscale, in-silico model of dynamically coupled angiogenic tumour growth is specified to in-vivo and in-vitro data, chosen, where possible, to provide a physiologically consistent description. The model is then validated against in-vivo data from murine mammary carcinomas, with particular focus placed on identifying the influence of mechanical factors. Crucially, we find that it is necessary to include hapto- and mechanotaxis to recapitulate observed time-varying spatial distributions of angiogenic vasculature. © 2017 Vavourakis et al.en
dc.language.isoengen
dc.sourcePLoS Computational Biologyen
dc.subjectModelsen
dc.subjecthumanen
dc.subjectNeoplasmsen
dc.subjectHumansen
dc.subjectpredictionen
dc.subjecttumor microenvironmenten
dc.subjectneoplasmen
dc.subjectbiological modelen
dc.subjectcell proliferationen
dc.subjectbreast carcinomaen
dc.subjectnonhumanen
dc.subjectpathologyen
dc.subjectStressen
dc.subjecttumor growthen
dc.subjecttumor vascularizationen
dc.subjectArticleen
dc.subjectBiologicalen
dc.subjectpathophysiologyen
dc.subjectAnimalsen
dc.subjectanimalen
dc.subjectmouseen
dc.subjectphysiologyen
dc.subjectNeovascularizationen
dc.subjectneovascularization (pathology)en
dc.subjectPathologicen
dc.subjectstressen
dc.subjectvalidation studyen
dc.subjectevaluation studyen
dc.subjectdrug delivery systemen
dc.subjectCellularen
dc.subjectcomputer simulationen
dc.subjectperfusionen
dc.subjectblood pressureen
dc.subjectMechanicalen
dc.subjectMechanotransductionen
dc.subjectoxygenen
dc.subjectmechanical stressen
dc.subjectshear strengthen
dc.subjectblood flow velocityen
dc.subjectmechanotransductionen
dc.subjectcomputer modelen
dc.subjectbiomechanicsen
dc.subjectcancer modelen
dc.subjectmeasurement accuracyen
dc.titleA Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growthen
dc.typeinfo:eu-repo/semantics/article
dc.identifier.doi10.1371/journal.pcbi.1005259
dc.description.volume13
dc.author.facultyΠολυτεχνική Σχολή / Faculty of Engineering
dc.author.departmentΤμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής / Department of Mechanical and Manufacturing Engineering
dc.type.uhtypeArticleen
dc.contributor.orcidStylianopoulos, T. [0000-0002-3093-1696]
dc.gnosis.orcid0000-0002-3093-1696


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record