Multiscale modelling of solid tumour growth: the effect of collagen micromechanics
Date
2016Author
Wijeratne, P. A.Vavourakis, V.
Hipwell, J. H.
Voutouri, C.
Papageorgis, P.

Evans, A.
Hawkes, D. J.
Source
Biomechanics and Modeling in MechanobiologyVolume
15Pages
1079-1090Google Scholar check
Keyword(s):
Metadata
Show full item recordAbstract
Here we introduce a model of solid tumour growth coupled with a multiscale biomechanical description of the tumour microenvironment, which facilitates the explicit simulation of fibre–fibre and tumour–fibre interactions. We hypothesise that such a model, which provides a purely mechanical description of tumour–host interactions, can be used to explain experimental observations of the effect of collagen micromechanics on solid tumour growth. The model was specified to mouse tumour data, and numerical simulations were performed. The multiscale model produced lower stresses than an equivalent continuum-like approach, due to a more realistic remodelling of the collagen microstructure. Furthermore, solid tumour growth was found to cause a passive mechanical realignment of fibres at the tumour boundary from a random to a circumferential orientation. This is in accordance with experimental observations, thus demonstrating that such a response can be explained as purely mechanical. Finally, peritumoural fibre network anisotropy was found to produce anisotropic tumour morphology. The dependency of tumour morphology on the peritumoural microstructure was reduced by adding a load-bearing non-collagenous component to the fibre network constitutive equation. © 2015, Springer-Verlag Berlin Heidelberg.
Collections
Cite as
Related items
Showing items related by title, author, creator and subject.
-
Article
Remodeling of extracellular matrix due to solid stress accumulation during tumor growth
Pirentis, A. P.; Polydorou, C.; Papageorgis, P.; Voutouri, C.; Mpekris, F.; Stylianopoulos, T. (2015)Solid stresses emerge as the expanding tumor displaces and deforms the surrounding normal tissue, and also as a result of intratumoral component interplay. Among other things, solid stresses are known to induce extensive ...
-
Article
Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy
Mpekris, F.; Papageorgis, P.; Polydorou, C.; Voutouri, C.; Kalli, M.; Pirentis, A. P.; Stylianopoulos, T. (2017)Targeting the rich extracellular matrix of desmoplastic tumors has been successfully shown to normalize collagen and hyaluronan levels and re-engineer intratumoral mechanical forces, improving tumor perfusion and chemotherapy. ...
-
Article
Role of vascular normalization in benefit from metronomic chemotherapy
Mpekris, F.; Baish, J. W.; Stylianopoulos, T.; Jain, R. K. (2017)Metronomic dosing of chemotherapy - defined as frequent administration at lower doses - has been shown to be more efficacious than maximum tolerated dose treatment in preclinical studies, and is currently being tested in ...